Skip to main content

New players and new tools in the bio-economy

David Zilberman, professor, agriculture and resource economics | July 24, 2017

Photos of the Berkeley City Club courtesy of David Zilberman

Almost every year over the last 20 years, the International Consortium of Applied Bio-economy Research (ICABR), was meeting in beautiful Ravello in Italy to present new research results on the economics and policies of agricultural biotechnology, biofuels and the environment.

We enjoyed the wonderful views and food of the Amalfi Coast, and the meetings inspired publications and useful policy ideas, and led to lasting friendship. This year, we moved the ICABR meeting to Berkeley. We held them in the elegant Berkeley City Club to maintain the Ravello standard and we had a wonderful conference dinner on the San Francisco Bay.

[1]Our theme this year was “New Players and New Tools in the Bioeconomy,” and Berkeley was an appropriate location being the best place for gene-editing technology CRISPR and many synthetic biology innovations. Indeed, three leading Berkeley researchers provided an overview of frontier discoveries.

Much of the emphasis was on gene editing, which is easier to perform and much more difficult to detect than transgenic technologies. The technology is still in infancy and it is likely to be refined and improved, but its growth shouldn’t be impeded by the excessive regulations. Some of the presentations in the conference suggest that thousands of lives and millions of dollars will be lost under excessive regulation of transgenic technologies.

Brian Staskawicz reported on new genome editing strategies to (1) produce resistance to cassava brown streak virus, (2) protect against Downy mildew and other tomato diseases, (3) control severe fungal diseases in wheat and (4) find solutions to cacao swollen-shoot virus which threatens the cacao industry in West Africa.

Krishna Niyogi reported on discovery of transgenic traits that may increase crop yields by 15-30% by increasing the efficiency of utilizing solar energy by the plants. This discovery, once commercialized, has a potential to drastically increase the supply of food, reduce its price and reduce the environmental footprint of agriculture.

Jay Keasling reported that while the development of second generation biofuels has been slower than expected, the cost per gallon is declining over time and within a decade, cellulosic biofuels are expected to be competitive with conventional fuels and generate only 25% of the greenhouse gas emissions of gasoline per unit. This line of research is expected to lead to new aviation fuels and other fine chemicals. It is a part of larger research agenda on conversion of biomass to produce fuels. Biomass derivatives have the potential to replace liquid fuels, generate natural gas and provide feedstocks for power plants. The efficiency of conversion of biomass to fuels is low, the cost of conversion is high, and the assessment of impact of conversion of forest products to biofuels is challenging. The research on biofuels is in early stages. It is combining advances in microbiology, better understanding of forestry and ecology, and design of industrial processes and supply chains for renewable products.

In the past, much of the emphasis of ICABR was on crop biotechnology. But modern breeding has perhaps even more impact on animal agriculture, both with land and water animals. Alison Van Eenennaam emphasized that scientific progress leading to improved breeding of poultry and other livestock improves food security and contributes to environmental sustainability by reducing pressure on crop systems. Transgenics and gene editing are improvements on existing breeding varieties that improve the versatility and capability of scientists and farmers.

Perry Hackett showed how gene editing can improve the quality of livestock, in addition to reducing exposure to disease and accelerating animal growth. He emphasized that regulations are the key constraint for taking advantage of modern breeding which is much more accurate and precise than traditional breeding. New faster growing breeds of poultry, for example, makes protein available for hundreds of millions of people.

Another big challenge is to improve the availability of fish through aquaculture and mariculture. Faster growing fish in controlled environments combined with sound regulation will enable protection of natural fish populations from depletion and improve human nutrition.

Ronald Stotish from AquaBounty told the story of development of transgenic salmon that grows much faster than traditional salmon and can be commercially utilized within one season. It can be grown in ponds and it overcomes the transportation and freshness constraints and reduces the availability of fish in inland regions. After 25 years, transgenic salmon passed all the regulatory hurdles and is currently available in Canada. However, its future in the US is still uncertain.

The modern bio-economy takes advantage of both better genetic tools as well as improved information technologies. Giuseppe Novelli highlighted that we are approaching the era of personal treatment of humans as well as livestock and fields, by identifying precision technologies that enable monitoring performance at micro units and identifying challenges, for example, diseases and lack of nutrients. This allows for administering targeted solutions to improve livelihoods as well as improve food supplies and likely to reduce pressure on the environment and the challenge of climate change.

The development of this technology, of course, will take time and wouldn’t be immediately profitable. Therefore, continued support of public research will allow for new basic discoveries that can then be transferred to the private sector for commercialization. The recent past (in particular, the experience of medical biotechnology vs. agricultural biotechnology) also suggests that universities may aim to sell non-exclusive licenses to major process innovations, so that multiple companies can take advantage of these technologies rather than sell exclusive rights to few companies. The development of new technology will not be without glitches and therefore having a regulatory framework that both prevents mishaps and enable progress is essential.

The life sciences and other major sectors of the bio-economy are going through major transitions, including the proposed acquisition of Monsanto by Bayer, Syngenta by ChemChina, and Dupont by Dow Chemical. Robert Fraley of Monsanto suggested that the mergers are important, as companies need to develop integrated technologies to take advantage of new biological, chemical and informational knowledge.

Companies aim to develop complementary capabilities, achieve sufficient economies of scale and reduce transaction costs to develop better and cost-effective products. He suggested that we will end up with several major agribusiness companies that compete but share the rights to IPR to utilize advanced knowledge yet maintain unique offerings.

This perspective suggests that the structure of the agricultural life science sector is approaching the structure of major sectors like telecommunications, automobiles and pharmaceuticals with several major giants that control many of the new products complemented by numerous specialized local firms that serve specific needs of the consumers.

The discussion that followed suggested that there is a risk of abusing market power and therefore calls for effective regulatory oversight, which is a challenged to protect consumers and the environment while enabling the development and implementation of innovations and changes. Furthermore, it is important to have a structure that allows new innovations to be commercialized by startups which may challenge or lead to changes of the status quo.

Neal Gutterson from Pioneer suggested that informational and biological technologies are revolutionizing the agricultural input sector and will result in new products available to farmers and consumers. More powerful computing and improved microbiological methods, enable a much better understanding of the working of living systems. Combined with gene editing and other tools, the development of new solutions to address plant disease and improved productivity and performance is accelerated, but the capacity to bring it to market depend on regulatory constraints.

The performance of new biological solutions is enhanced by precision technologies that are able to adjust input use and crop treatment to differences at the field level. This will increase yields and reduce negative side effects of agricultural production, but it also requires a joint effort between seed companies and equipment manufacturers. These new developments are likely to occur first in developed countries, but it is essential to develop capacity to transfer them to developed countries that are more likely to be challenged by climate change and thus can gain more from these new capabilities.

Ronald Herring emphasized that the technological use patterns in agriculture are affected less by what is technically feasible but rather by regulatory and political considerations. Regulators enabled accelerated use of medical over agricultural GMOs due to urban bias and higher perceived benefit versus risk. Political economic considerations led to differences in regulation in the US versus Europe and Africa. Self-interest of activists and historical development fueled some of the resistance to GMOs.

But new technologies like CRISPR may have a cleaner slate. The introduction of CRISPR is likely to the emergence of new players and new regulatory environments. We may see smoother regulatory sailing, especially for gene editing applications that do not require transfer of gene between organisms.

The importance of strong public sector research capacity and openness to new technologies was emphasized by Dr. Lopes, the president of Brazilian Agricultural Research Corporation (Embrapa). Before the mid-20th century much of Brazil’s land wasn’t fertile but research by Embrapa and others transformed poor acidic soils into fertile lands and developed new crop and animal production system that are sustainable and appropriate to the climatic conditions of Brazil.

Brazil is now engaging in low to no tillage production methods and has permitted the use of transgenic crops. The use of Bt corn in particular has allowed Brazil to overcome the Fall Armyworm problem and enabled double cropping on much of the land. Brazil has become a powerhouse food producer. It is the largest producer of sugarcane, the second largest producer of soybeans and third largest producer of corn.

The presentations by Jennifer Thompson and Sylvester Oikeh emphasized the waste and costs associated with excessive regulations. They noted that 500 million dollars were invested in development on transgenic varieties for sub-Saharan Africa, and that there are several crops in the pipeline. While the adoption of Bt corn in South Africa was successful and benefited the poor, regulations have blocked the adoption of other transgenic varieties. These varieties have been shown to reduce damage from pests and climatic changes in major staple crops (banana in Uganda, cowpea and corn in other countries,) but barring their use is costly in terms of human lives and income.

Pedro Sanchez, a World Food Prize winner, emphasized that improving productivity, through diversified approaches that include the use of fertilizers, better soil management, pest control and improved varieties are especially crucial for Africa. Africa has been making a lot of progress in terms of children’s education, ownership of appliances and livestock, and life expectancy. Yet yields are much lower than in other regions in the world. Changes in practices will require changes in policy, including reducing the cost of inputs, improving transportation and access to markets and infrastructure, farmers’ education and improved regulation.

Dr. Sanchez also highlighted the Fall Armyworm, a current pest that is spreading at unprecedented speed from East to West Africa, destroying maize fields, making it a clear and present danger for famine. He noted that it can be controlled by Bt corn varieties, as we saw in Brazil. However, Bt corn is banned in most of Africa today and now is the time to remove the ban and give it a chance.

The most rewarding aspect of being a member of ICABR is recognizing the improved capabilities of technologies based on modern biology and contributing to the challenge of developing policies that will allow us to take advantage of these technologies in a sustainable manner. This is an on-going process, but as we are challenged with addressing climate change, improving food security and preserving biodiversity, the value of the bioeconomy is becoming more transparent than ever.

[1] The conference was sponsored by the Giannini Foundation, Iowa State University, Innovative Genomics Institute, the College of Natural Resources of UC Berkeley, Monsanto and the Matthew Winkler Family Foundation. It was run by the International & Executive Programs of College of Natural Resources.

Comments to “New players and new tools in the bio-economy

  1. Hi! Very good contributions. This was an amazing opportunity to enjoy new challenges feeding the world. Many thanks!

Leave a Reply

Your email address will not be published. Required fields are marked *

Security Question * Time limit is exhausted. Please reload CAPTCHA.